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Abstract

This paper proposes an alternative data envelopment analysis (DEA) method for assessing the performance of joint main-
tenance shops (JMSs) in the Taiwanese Army over two 6-month periods in 2000. It further examines the possibility of using
DEA over time as a basis for continuous improvement. To help productivity improvements, the DEA results for the first
time period were implemented at the five selected JMSs located in Taipei, Taoyuan, Taichung, Chaiyi, and Kaoshiung. The
findings show that most of previously inefficient JMSs, on average, have become relative more efficient through DEA rec-
ommendation remedial actions. Three JMSs increased their technical and pure technical efficiencies; and one JMS increased
its scale efficiency. Few JMSs were operating at increasing returns to scale, indicating a potential to expand. As such, it can
be a valuable benchmarking tool for the JMS managers and assist in efficiently using scare resources to produce productivity.
Finally, the Army has accepted DEA as a performance measurement tool for JMSs.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Defense budgets have declined over past years.
In respond to using scare resources more efficiently,
Taiwanese Army developed and implemented a joint
maintenance logistical reform programme in 1999.
The programme aims at integrating six different types
of military equipment maintenance service into a joint
maintenance shop (JMS) at the corps level. A JMS
is responsible for overhaul maintenance of military
equipment including armament, chemical equipment,
communication systems, engineering equipment, ve-
hicles and armored vehicles. To maintain military
equipment, the Army operates eight JMSs nationwide.

∗ Tel.: +886-2-26212121ext5501; fax:+886-2-26260520.
E-mail address: shinn.sun@msa.hinet.net (S. Sun).

Performance measurement has been considered
important for JMS managers. Improvements in the
productivity of these JMSs are highly desirable since
productivity gains are translatable into increased op-
erational capabilities. The tactical logistics command
(TLC), an Army logistics agency, is responsible for
controlling the performance of Army maintenance
units. Over the past decade the Army has not been
allocated enough defense budgets to buy the new mil-
itary equipment it feels are needed. This deficit could
be reduced by channeling resources saved through
productivity gains into new equipment purchases.

Army JMS managers use significant resources (e.g.
manpower, supplies, equipment, and facility) in the
equipment maintenance process. The outputs of that
process are vital to the mission of the Taiwanese
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Army. Many potential benefits are possible through
performance improvements. However, to realize this
potential, the Army needs an objective system to
measure and monitor the performance of JMSs over
time. The TLC had no creditable performance system
prior to this study.

The objective of this study is to examine potential
applications of data envelopment analysis (DEA) in
assessing JMS productivity. Productivity/performance
is defined as ‘the ability to produce the outputs or
services with a minimum resource level required’.
This research focuses on new methodological devel-
opments in DEA and application of an alternative
DEA model to perform actual improvements in sys-
tem performance. In specifically, we first present
a model by integrating ‘non-discretionary (NCN)’
model (Banker and Morey, 1986) and ‘assurance re-
gion (AR)’ model (Thompson et al., 1986, 1990) and,
referred to ‘NCN–AR’ model. The NCN–AR model
restricts the domain of multipliers and incorporates
non-discretionary input and output variables that are
beyond the control of an organization’s management.
Analytical benefits of the proposed include the im-
provement of the discriminatory power of DEA and
the restriction of the multiplier domain based on a
prior information incorporating decision makers’ pref-
erences. Then, we test whether the proposed method
can be used as a basis for continuous improvements
in a filed experiment where the TLC took part in. The
DEA NCN–AR model can, thus, proceed one more
step in forging a closer association with performance
measurement and become a useful system to mea-
sure and monitor JMS maintenance productivity over
time.

DEA, a linear programming based model, was orig-
inally presented byCharnes et al. (1978). The DEA
methodology appears to be an appropriate measure-
ment tool for this study due, partly, to the following
reasons.

(1) Performance of the JMSs is characterized by a
large number of ‘inputs’ and ‘outputs’.

(2) Although work routines at the JMS level are gen-
erally well defined, some maintenance tasks can
be performed by different combinations of such
routines.

(3) It does not require explicit functional relation-
ships between inputs and outputs.

Due to these reasons, assessing the efficiency of the
JMSs by conventional techniques (see, e.g.Roll and
Sachish, 1981) proved difficult. In addition to its sound
theory, transparence and reproducible computational
procedure, the DEA method has several advantages
over traditional approaches such as ratio analysis and
regression analysis (seeSherman, 1986). A major ad-
vantage is that DEA has been empirically validated
many times over. As pointed out inGolany (1988),
DEA is emerging as the leading method for efficient
evaluation, in terms of both the number of research
papers published and the number of applications to
real world problems. We shall assume throughout this
paper some knowledge of DEA. Readers not familiar
with DEA are referred toCharnes et al. (1994).

The rest of paper is organized as follows.Section 2
provides a review of DEA and published DEA studies
of maintenance unit performance in military.Section 3
introduces a methodology section discussing the sam-
ple, selection of input and output measures, and de-
velopment of an alternative DEA model.Section 4
presents the empirical results of the analysis.Section
5 concludes the paper.

2. Literature review

2.1. Basic DEA models

This subsection provides a brief review of two ba-
sic models developed in the DEA literature, namely,
the Charnes, Cooper and Rhode model (referred to as
the CCR model) and the Banker, Charnes and Cooper
model (referred to as the BCC model). A variety of
extensions to the basic DEA models can be found in
Cooper et al. (2000).

Charnes et al. (1978)initially introduced the CCR
model to measure the relative efficiency of decision
making units (DMUs) using multiple inputs to pro-
duce multiple outputs. They addressed constant returns
to scale (CRS). CRS assumes that there is a propor-
tional change between inputs and outputs. The CRS
efficiency represents technical efficiency (TE), which
measures inefficiencies due to input/output configura-
tion and as well as size of operation.

Banker et al. (1984)presented the BCC model to de-
termine whether there are any inefficiencies attributed
to disadvantageous conditions under which a DMU
is operating, which are not directly related to the in-
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puts and outputs, and to allow for a larger peer group
to be considered. They addressed variable returns to
scale (VRS). VRS assumes that there is a propor-
tional change in inputs does not result in a proportional
change in outputs. The VRS efficiency represents pure
technical efficiency (PTE), that is, a measure of effi-
ciency without scale efficiency (SE). It is thus possible
to decompose TE into PTE and SE. Scale efficiency
can be estimated by dividing PTE into TE.

To investigate determine the current economy of
scale that a DMU is experiencing, an efficiency in-
dex must be computed when the technology exhibits
non-increasing returns to scale (NIRS). This can be
done by relaxing the constraint on the weigh variables
in the dual form of the BCC model to be less than or
equal to one. The solution to the LP problem for DMU
j when

∑n
j=1λ = 1 is replaced by

∑n
j=1λ ≤ 1 is de-

noted by TEj,NIRS. Again, the LP problem is solved for
each DMU. TEj,NIRS is then compared to TEj,VRS. If
TEj,NIRS = TEj,VRS, then the scale inefficient DMUj
is experiencing DRS and would be benefited by down-
sizing. On the other hand, if TEj,NIRS < TEj,VRS,
then the scale inefficient DMUj is operating IRS and
should expand its production. For a detailed discus-
sion on returns to scale, seeBanker and Thrall (1992).

2.2. DEA studies of maintenance unit performance
in military

Three main studies that have used DEA to measure
the performance of military maintenance units can be
found inCharnes et al. (1985), Roll et al. (1989)and
Clarke (1992). Each of these papers provided impor-
tant contributions to the DEA and efficiency measure-
ment literature. In what follows we discuss these stud-
ies in terms of the production model, sample size and
DEA models, and provide some key observations.

The first of these applications, theCharnes et al.
(1985)research, used the input orientated CCR model
(Charnes et al., 1978) to analyze fourteen tactical
fighter wings (TFWs) in the US Air Force using artifi-
cial data during the period October 1981 through May
1982. The production model consisted of eight inputs
and four outputs. The inputs are: number of officers,
percentage of assigned officers to authorized officers
in a wing, number of airmen, percentage of assigned
airmen to authorized airmen in a wing, 100,000 minus
total number of hours in a specific month in which

the possessed aircraft were not mission capable due
to supply problems, average number of aircraft in a
wing; 1000 minus number of sortie losses due to ex-
ternal reasons, and cannibalization rate. The outputs
include total number of sorties flown by each wing in
a specific month, total number of hours that the pos-
sessed aircraft were fully or partially mission capable,
100000 minus total number of hours in a specific
month in which the possessed aircraft were not mis-
sion capable due to maintenance problems, and fix rate
within given time intervals. Important to highlight is
their attempt to capture in their production model the
observed quality of maintenance operations (e.g. the
total number of hours in a specific month in which the
possessed aircraft in each wing were not mission ca-
pable due to maintenance problems). In addition, they
used the window analysis technique to increase the
number of DMUs in dealing with degrees of freedom
problems caused by insufficient number of DMUs.

Roll et al. (1989)applied the input orientated CCR
model to analyze five maintenance units (MUs) in the
Israeli Air Force using quarterly data. The production
model consisted of three inputs (labor, operational
facility, spare parts consumption in dollars) and six
outputs (sorties types I and II, flying hours, ratio of
maximum daily sorties to average, standard deviation
of daily sorties and number of cancelled flights. The
emphasis of this paper is on the choice of factors to
enter the analysis and on assigning numerical values
to qualitative factors. This paper attempted to inves-
tigate production models with different combination
of pre-selected outputs. Performance of various levels
of the MUs was evaluated.

Clarke (1992)also used the input orientated CCR
model to evaluate vehicle maintenance performance at
seventeen bases of the United States Air Force’s Tac-
tical Air Command over the time period 1983–1986.
The production model consisted of four inputs (la-
bor hours, material costs, number of trainees, and
adjusted vehicle days) and two outputs (number of
in-commission days for the vehicle fleet and number
of mechanics trained each year. The author discussed
the results of the DEA model over time and analyzed
managerial reactions to the DEA method.

There are some key observations on this previous
work using DEA.
(1) The justification of the presence of the CRS is

not provided. CRS assumes there is no signifi-
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cant relationship between the scale of operations
and efficiency. Unfortunately, the authors of pre-
vious studies did not explain why they considered
a DEA model with CRS.

(2) The issue of RTS is not examined. Investigating
RTS is important because scale inefficient units
can identify their current operating economies
of scale (i.e. most productive scale size, MPSS)
and determine whether their operations should be
downsizing or expanding. However, to date none
of the published research works has addressed
this issue.

(3) None of the research cited has treated weight
restrictions and the presence of non-discretionary
inputs and outputs. Many researchers (e.g.Dyson
and Thanassoulis, 1988; Wong and Beasley, 1990)
noted that traditional DEA allows for complete
weight flexibility and may result in identify-
ing a DMU with an unrealistic weight scheme
to efficient. Restricting multipliers (weights)
would reduce the number of efficient DMUs.
As Banker and Morey (1986)noted, there ex-
its non-discretionary variables that have values
determined by forces exogenous to the organi-
zation under evaluation, and should keep the
non-controllable variables fixed at its current
level. These two issues have not been addressed
in previous studies.

This paper contributes five extensions to the exist-
ing research. First, we propose an alternative DEA
model which considers both weight restrictions and
the presence of non-discretionary inputs and outputs.
Second, we present a justification for using the BCC
model. Third, we empirically test the effects of DEA
in evaluating maintenance performance at five JMSs
of the TLC. Fourth, we investigate returns to scale
for each JMS and suggest potential improvements
for inefficient JMSs. Finally, we discuss what actual
managerial recommendations obtained from the DEA
evaluation that would lead to in improving JMSs.

3. Methodology

3.1. Sample

The sample consists of five JMSs of the Taiwanese
Army’s TLC; these are core maintenance units at
the corps level excluding three extremely small units

which are very different from the rest by their size
and activities. The five JMS were labeled A, B,. . . ,
E for confidentiality. A JMS in each different month
was treated as a DMU. Thus, A DMU’s performance
in a particular month was contrasted with its perfor-
mance in other months in addition to the performance
of the other DMUs. To perform DEA over time we
collected two sets of data covering the time periods
January–June and July–December 2000. Then, we
performed two DEA analyses, where each analysis
examined 30 DMUs.

3.2. Output and input measures

For the purpose of building a simple and yet fair
picture of maintenance operations and productivity,
the TLC had decided to group maintenance ser-
vices by ‘importance of operation’ and ‘complexity
of operation’. This had resulted in the following
four types of maintenance operations: (1) vehicles,
(2) armament, (3) armored vehicles, and (4) ‘other
equipment’ (chemical equipment, communication
systems, and engineering equipment).

It was agreed that the four categories of opera-
tions were sufficient to convey an overview of im-
portance and complexity of operation identified and
they were retained for the purposes of the assessment
reported in this paper. Similarly, the other input and
output indicators were aggregated into composite fac-
tors, such as labor hours, spare parts costs and per-
sonnel trained. From the review of published sources,
the TLC staff managers and JMS managers selected
five output measures and six input measures for this
study. The output and input variables were defined as
follows.

(1) Input variables
• Total number of assigned vehicle to a JMS in a

specific month (x1).
• Total number of armament assigned to a JMS

in a specific month (x2).
• Total number of armored vehicle assigned to a

JMS in a specific month (x3).
• Total number of ‘other equipment’ assigned to

a JMS in a specific month (x4).
• Spare parts costs (x5).
• Total number of available labor hours (x6).
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Fig. 1. General model of the joint maintenance process.

(2) Output variables
• Total number of assigned vehicles that are in

serviceable condition each month (y1).
• Total number of assigned armament that are in

serviceable condition each month (y2).
• Total number of assigned armored vehicles that

are in Serviceable condition each month (y3).
• Total number of assigned ‘other equipment’ that

are in serviceable condition each month (y4).
• Total number of personnel trained each month

(y5).

Among the input and output variables, only the
amount of ‘spare parts costs’ is discretionary. Whether
a JMS can obtain needed spare parts depends on de-
fence budgets allocated to the Army and available
spare parts provided by suppliers. Thus, the value of
this input variable is beyond the control of the JMS
managers. In addition, some outputs that cab be used
to measure effectiveness of JMS operations and per-

Table 1
Descriptive statistics for the five JMSs (30 observations)

Mean S.D. Minimum Maximum

Inputs
x1 163.6 90.54634 22 424
x2 3196.067 1944.781 71 5849
x3 108 97.6026 7 299
x4 3053.8 1653.113 155 5637
x5 8551154.7 9176527.036 238691 38674697
x6 3976.157 4487.693 286.9 23487

Outputs
y1 181.5333 505.3777 11 2781
y2 27.56667 51.86693 2 300
y3 3.666667 9.741093 0 54
y4 309.9 266.6728 22 1014
y5 163.9 34.18708 110 258

formance flexibility were not readily available. For
example, average number of in-commission days for
certain type of equipment used by the Army users and
mean time between failures. As is typical in any empir-
ical study, it is difficult but important that all possible
inputs and outputs are completely and correctly spec-
ified. The omission of important variables produces
biased results. In this paper, we base the analysis on
the model of JMS maintenance operations depicted in
Fig. 1.

After the cooperation of the Director of the TLC
was secured, we collected monthly data for the year
2000 from five JMSs in the Taiwanese Army and the
headquarters of TLC. The initial data covering the
time period January–June 2000 was chosen for DEA
analysis.Table 1presents descriptive statistics for the
initial data set.Table 2shows correlations obtained.
The JMS managers were then given 6 months to im-
prove their efficiency scores. At the end of the year
2000, data covering the time period July–December
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Table 2
Correlation coefficients among inputs and outputs

x1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5

x1 1
x2 0.526 1
x3 0.043 0.356 1
x4 0.028 −0.370 −0.473 1
x5 0.440 0.284 −0.222 0.040 1
x6 0.140 0.290 0.111 −0.094 −0.050 1
y1 0.531 0.266 0.410 −0.303 −0.030 0.121 1
y2 0.588 0.243 0.276 −0.252 0.016 0.076 0.927 1
y3 0.542 0.299 0.456 −0.332 −0.028 0.112 0.947 0.933 1
y4 0.539 0.258 0.094 0.068 0.345 −0.053 0.490 0.479 0.436 1
y5 0.566 −0.010 −0.100 0.522 0.212 −0.048 0.229 0.166 0.219 0.288 1

2000 were again collected and analyzed using DEA
for continuous improvements.

Several points are worthy of note here.

(1) Three operation categories (i.e. number of vehi-
cles, armored vehicles and armament assigned to
a JMS) have positively associated fix levels of the
three different categories. So JMSs that perform
well in one operation do so in the other two oper-
ations. ‘Labor hours’ has positively associated the
numbers of vehicle armament, and other equip-
ment that are in serviceable condition. The more
labor hours were used, the more fix levels of these
three types of assigned equipment would be in-
creased.

(2) ‘Spare parts costs’ is negatively associated with
the repair levels of assigned vehicles and armored
vehicles. Correlation coefficients are 0.03 and
0.028, respectively, which are not significant. It
may release that that availability of spare parts
for specific equipment would often affect a repair
level of this specific equipment. This is as we
expected.

(3) The number of ‘other equipment’ assigned to a
JMS is negatively associated with the repair lev-
els of vehicles, armored vehicles and armament
assigned to a JMS. It shows that as the number
of ‘other equipment’ assigned to a JMS increases,
the repair levels of other three types of equipment
decrease. The JMS managers indicated that com-
plexity of the operations, availability of spare parts
and experience of workers might result in the neg-
ative correlations. The order of the relative com-
plexity of maintaining four types of equipment

that the JMS managers considered from high to
low is armored vehicles, vehicles, armament and
other equipment. In practice, to obtain spare parts
for armored vehicles, vehicles, armament is more
difficult than to obtain spare parts for other equip-
ment. This is because the first takes a longer time,
normally 18 months, to buy materials overseas.
To maintain armored vehicles, vehicles and arma-
ment need more skillful workers and longer op-
erating hours. Knowing the fact that the more ar-
mored vehicles, vehicles, and armament assigned
to a JMS the longer operating time to be, Army
units would tend to assign more other equipment
to a JMS. Furthermore, a JMS lacking for avail-
able spare parts and skillful workers in maintain-
ing these three types of equipment would tend to
fix more other equipment.

(4) Total number of mechanics trained has positively
associated the fix levels of four types of equip-
ment. It is not surprising that well-trained per-
sonnel produce in higher repair levels of the four
types of equipment.

Observations of negative correlations between in-
puts and outputs flaws DEA logic and therefore any
results under these conditions are highly suspect. In
order to preserve the isotone property for some out-
puts we must rescale the data to remove the negative
correlation. A scale shift transformation was then em-
ployed by multiplying the original value of the output
variable for each JMS with a scalar.

As Avkiran (2001) suggested, an alternative ap-
proach for choosing between CRS and VRS is to run
the performance models under each assumption and
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compare the efficiency scores. If a majority of the
DMUs emerge with different scores under the two as-
sumptions, then it is safe to assume VRS. However,
if the majority of DMUs are assessed as having the
same efficiency, one can employ CRS without being
concerned that scale inefficiencies might confound the
measure of technical efficiency. We then run the CCR
and BCC models using the selected inputs and out-
puts. Comparing the two runs reveals different effi-
ciency scores, thus confirming the presence of VRS.
In addition, the JMS managers agreed to use the BCC
model to identify the returns to scale of each JMS.
Hence, the assessment was run under VRS.

3.3. DEA models

In the subsection, we present output-oriented DEA
NCN–AR models for measuring the performance of
JMSs. Output orientation is a natural choice because
the objective of the TLC is to maximize outputs while
using no more than the observed amount of any in-
put. The development of the proposed DEA models is
given in the following paragraphs.

Banker and Morey (1986)provided a modification
to the basic DEA model permits the DEA solution
to indicate the amount a controllable input can be re-
duced while keeping the non-controllable input while
keeping the non-controllable input fixed at its current
level. Mathematically, the primal multiplier form of
the output-oriented NCN–CRS model can be repre-
sented as:

TEO,CRS
NCN = min

∑

i∈D

vixij (1)

subject to
∑s

r=1uryrj − ∑
i∈ND vixij − ∑

i∈D vixij

≤ 0 (j = 1, . . . , n)
∑s

r=1uryro − ∑
i∈ND vixio = 1

vi ≥ ε, i ∈ D (i = 1, . . . , m)

vi ≥ 0, i ∈ ND

ur ≥ ε, r = 1, . . . , s

where TEO,CRS
NCN is the optimal value of technical

efficiency of the target DMU (DMUo) under the
output-oriented NCN–CRS evaluation;xij the amount
of input i to DMU j; yrj is amount of outputr to DMU

j; vi the weight given to inputi; ur the weight given
to outputr; ε a non-Archimedean infinitesimal;s the
number of outputs;m the number of inputs; andn the
number of DMUs. The symbol D and ND refer to
‘discretionary’ and ‘non-discretionary’, respectively.

This NCN–CRS model can be extended in order
to accommodate non-discretionary input and output
variables in the following form:

TEO,CRS
NCN = min

∑

i∈D

vixij (2)

subject to
∑

r∈D uryrj − ∑
i∈ND vixij − ∑

i∈D vixij ≤ 0
∑

r∈D uryro − ∑
i∈ND vixio = 1

vi ≥ ε, i ∈ D

vi ≥ 0, i ∈ ND

ur ≥ ε, r ∈ D

Traditional CCR and BCC models place no constraints
on weight attributed to each input and each output in
the multiplier problem, thus allowing absolute weight
flexibility. This can result in identifying a DMU with
an extreme weighting scheme to be efficient. Outlier
units will tend to be classified as technically efficient
and zero weights will be assigned to most of their
inputs/outputs. This represents a contradiction in it-
self because if such inputs/outputs were not important,
they would not be included in the analysis. Absolute
weight flexibility can result in an overestimation of
technical efficiency. To overcome this problem, the as-
surance region (AR) model developed inThompson
et al. (1986)and further defined inThompson et al.
(1990) can be used to restrict the values that virtual
weights may attain and thereby, limit the range of
acceptable efficient input and output levels. The AR
model provides lower and upper bounds on the ad-
missible values of variables. These bounds take the
following form.

δr ≤ ur/uro ≤ γr for all r 	= ro,

αi ≤ vi/vio ≤ βi for all i 	= io (3)

Here, uro and vio represent primal variables which
serve to establish the upper and lower bounds repre-
sented byδr, γr and byαi, βi for the primal variables
associated with each output and input.
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We now add (3) to (2). Thus, the output-oriented
NCN–AR–CRS model is expressed as:

TEO,CRS
NCN–AR = min

∑

i∈D

vixij (4)

subject to
∑

r∈D uryrj − ∑
i∈ND vixij − ∑

i∈D vixij ≤ 0
∑

r∈D uryro − ∑
i∈ND vixio = 1

δr ≤ ur/uro ≤ γr for all r 	= ro,

αi ≤ vi/vio ≤ βi for all i 	= io

vi ≥ ε, i ∈ D

vi ≥ 0, i ∈ ND

ur ≥ ε, r ∈ D

where TEO,CRS
NCN–AR is the optimal value of technical

efficiency of the target DMU (DMUo) under the
output-oriented NCN–AR–CRS evaluation.

Following is the primal form of the output-oriented
NCN–AR–VRS model.

TEO,VRS
NCN–AR = min

∑

i∈D

vixij − vo (5)

subject to
∑

r∈D uryrj − ∑
i∈ND vixij − ∑

i∈D vixij − vo ≤ 0
∑

r∈D uryro − ∑
i∈ND vixio = 1

δr ≤ ur/uro ≤ γr for all r 	= ro,

αi ≤ vi/vio ≤ βi for all i 	= io
vi ≥ ε, i ∈ D

vi ≥ 0, i ∈ ND
ur ≥ ε, r ∈ D

vo free in sign

where TEO,VRS
NCN–AR is the optimal value of pure techni-

cal efficiency of the target DMU (DMUo) under the
output-oriented NCN–AR evaluation.

Then, scale efficiency for DMUo is obtained as:

SEO
NCN–AR = TEO,CRS

NCN–AR

TEO,VRS
NCN–AR

(6)

It represents the proportion of inputs that can be fur-
ther reduced after pure technical inefficiency is elimi-
nated if scale adjustments are possible. It has a value
of less than or equal to one. If DMUo has a value equal
to one, DMUo is operating at the constant returns to

scale size. If SEo is less than one, DMUo is scale
inefficient and there is potential input saving through
the adjustment of its operational scale. Whether the
scale inefficient DMUo should be either downsiz-
ing or expanding depends on its current operating
scale.

4. Empirical results

4.1. Restriction on output multipliers

In order to measure NCN–AR efficiency, the prior
information for (3) was determined by one TLC staff
manager and five JMS managers. Weight restriction is
imposed on outputs because the TLC attempts to max-
imize the outputs while using the given input levels.
The managers made a pairwise comparison of the rel-
ative importance of each output using their subjective
judgments. Analytic Hierarchy Process (AHP) pro-
posed bySaaty (1980)was used to quantifying their
subject judgments. The results derived from this AHP
analysis then served as a guideline for setting the up-
per and lower bounds of (3). The adjusted weights on
outputs of the six managers are shown inTable 3.

In order to take into account the various views which
the managers showed in theTable 1, all managers
agreed with us to use the assurance region concept in
the following way.

Let the weight for outputr (yr) be ur (r =
1, 2, 3, 4, 5, 6). The ratio u1/u2 takes the value
0.294/0.176 = 1.670 for Manager 1, 0.229/0.2 =
1.145 for Manager 2, 0.243/0.162 = 1.5 for
Manager 3, 0.216/0.189 = 1.143 for Manager
4, 0.216/0.189 = 1.404 for Manager 5 and
0.182/0.242 = 0.752 for manager 6. Thus, we have
the range of the ratiou1/u2 as expressed by the lower

Table 3
Adjusted weights on outputs of six managers

Manager y1 y2 y3 y4 y5 Sum

Manager 1 0.294 0.176 0.265 0.147 0.118 1.000
Manager 2 0.229 0.200 0.257 0.171 0.142 1.000
Manager 3 0.243 0.162 0.270 0.189 0.135 1.000
Manager 4 0.216 0.189 0.270 0.162 0.162 1.000
Manager 5 0.219 0.156 0.281 0.156 0.188 1.000
Manager 6 0.182 0.242 0.273 0.182 0.121 1.000
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and upper bounds below

0.752≤ u1/u2 ≤ 1.670

In the same way we can find the range ofuj/ui for
each pair (i, j) as follows:

0.752≤ u1/u2 ≤ 1.670

0.666≤ u1/u3 ≤ 1.109

1 ≤ u1/u4 ≤ 2

1.165≤ u1/u5 ≤ 2.492

1.128≤ u3/u2 ≤ 1.506

and

0.857≤ u2/u4 ≤ 1.330

0.830≤ u2/u5 ≤ 2

1.429≤ u3/u4 ≤ 1.803

1.495≤ u3/u5 ≤ 2.256

0.830≤ u4/u5 ≤ 1.504

Use of these “paired comparisons” is in line with the
principles adopted in the AHP. Using these upper and

Table 4
Efficiency results over time

DMU code January–June 2000 DMU code July–December 2000

TE PTE SE RTS TE PTE SE RTS

A-1 60.70 100 60.70 IRS A-7 11.16 13.18 84.67 CRS
A-2 74.07 100 74.07 IRS A-8 100 100 100 CRS
A-3 79.70 100 79.70 IRS A-9 100 100 100 CRS
A-4 100 100 100 CRS A-10 100 100 100 CRS
A-5 100 100 100 CRS A-11 100 100 100 CRS
A-6 100 100 100 CRS A-12 25.81 100 25.81 IRS
B-1 13.77 17.11 80.48 IRS B-7 28.99 52.88 54.82 CRS
B-2 19.17 23.13 82.88 IRS B-8 60.97 100 60.97 IRS
B-3 43.62 45.41 96.06 IRS B-9 100 100 100 IRS
B-4 34.31 38.84 88.34 IRS B-10 27.38 43.40 63.09 IRS
B-5 21.13 24.83 85.10 IRS B-11 29.92 100 29.92 IRS
B-6 28.70 33.13 86.63 IRS B-12 50.47 100 50.47 IRS
C-1 28.46 42.89 66.36 IRS C-7 8.23 12.37 66.53 CRS
C-2 32.71 45.99 71.12 IRS C-8 53.02 100 53.02 IRS
C-3 58.63 80.78 72.58 IRS C-9 46.63 100 46.63 IRS
C-4 21.24 31.12 68.25 IRS C-10 100 100 100 CRS
C-5 18.69 26.71 69.97 IRS C-11 67.93 100 67.93 IRS
C-6 32.57 49.56 65.72 IRS C-12 67.83 100 67.83 IRS
D-1 40.24 100 40.24 IRS D-7 7.23 10.16 71.16 IRS
D-2 22.05 100 22.05 IRS D-8 16.78 100 16.78 IRS
D-3 21.22 89.63 23.68 IRS D-9 27.41 56.12 48.84 IRS
D-4 20.06 56.36 35.59 IRS D-10 27.82 66.64 41.74 IRS
D-5 32.74 100 32.74 IRS D-11 23.22 100 23.22 IRS
D-6 17.10 38.45 44.47 IRS D-12 13.86 100 13.86 IRS
E-1 100 100 100 CRS E-7 1.42 5.75 24.70 CRS
E-2 11.19 11.97 93.48 IRS E-8 32.32 36.62 88.26 CRS
E-3 83.55 90.31 92.51 IRS E-9 44.79 48.79 91.80 CRS
E-4 24.45 25.95 94.22 IRS E-10 35.26 39.96 88.24 IRS
E-5 14.24 15.12 94.18 IRS E-11 100 100 100 CRS
E-6 21.61 22.77 94.91 IRS E-12 60.41 65.33 92.47 IRS

Mean 42.53 60.34 73.87 48.962 75.04 65.76

Note: TE, technical efficiency; PTE, pure technical efficiency; SE, scale efficiency; RTS, returns to scale; CRS, constant returns to scale;
DRS, decreasing returns to scale; IRS, increasing returns to scale.

lower bound as the assurance region constraints for
output weights, we applied the NCN–AR–VRS model
to two DEA analyses. The software utilized to perform
the DEA analyses was theDEA-Solver: Professional
Version, developed bySaitech Inc (2001).

4.2. Initial results

Initially, ten of the thirty DMUs identified inTable 4
were found to have pure technical efficiencies under
VRS in one or more aspects of their operations and
received a DEA efficiency score<100%. This means
that each of the ten DMUs was inefficient relative to
an efficient subset of the remaining twenty DMUs.
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As can be seen inTable 4, four DMUs in our sample
were operating at CRS/MPSS and the remaining 26 at
IRS in the first data collection period. JMSs operating
at IRS had not grown larger than their most productive
scale size and could consider expansion.Table 4also
shows that twenty-six of the thirty DMUs were scale
inefficient with average scale efficiency score 73.87.
It suggests that further potential output improvements
of 12.13 percent if it is possible for a JMS to operate
at the constant returns to scale technology. Among
the 26 scale-inefficient JMSs, 20 did not achieve pure
technical efficiencies. It should be noted, in general,
it is more difficult to reduce scale inefficiency than it
is to reduce technical inefficiency. Only when a DMU
becomes technically efficient does it make sense to
deal with scale inefficiency.

In order to examine stability and other prop-
erties of the efficiency evaluations, we performed
mean–variance analysis on efficiency scores.Table 5
presents the results of mean–variance analysis. JMS
A has the highest mean and low variance in its TE
ratings while the other four JMSs have low means and
variance. These four JMSs are due to inappropriate
input/output configuration as well as size of opera-
tions. Variations in PTE ratings show that JMS A not

Table 5
Mean–variance analysis

JMS Mean Variance

1–6 7–12 Change (%) 1–6 7–12

Technical efficiency
A 85.745 72.828 −15.064 234.952 1793.38
B 26.783 49.622 85.274 120.614 795.199
C 32.050 57.273 78.699 203.087 917.439
D 25.568 19.387 −24.175 80.006 67.038
E 42.507 45.700 7.512 1506.498 902.406

Pure technical efficiency
A 100 85.530 −14.470 0 1256.285
B 30.408 82.713 172.010 112.898 726.176
C 46.175 85.395 84.938 365.066 1279.836
D 80.740 72.153 −10.635 714.941 1291.39
E 44.353 49.408 11.397 60.340 828.710

Scale efficiency
A 85.745 85.080 −0.776 234.952 880.705
B 86.582 59.878 −30.842 29.212 526.572
C 69.000 66.990 −2.913 7.308 340.230
D 33.128 35.933 2.805 79.484 491.386
E 94.883 80.912 −14.724 6.944 647.328

Fig. 2. Efficiency trends for the most inefficient JMS.

only has the highest mean and the lowest variance,
followed by JMS D. Furthermore, JMSs B, C, and E
also have low means and high variances in their PTE
ratings. These three JMSs are not on pure technical
efficient frontier due to inappropriate input/output
configuration. JMS D has the lowest mean and high
variance in its scale efficiency ratings. The ineffi-
ciency is due to not appropriate size of operation.

A closer look at each of the inefficient JMSs can be
taken by depicting efficiency trends in TE, PTE, and
SE scores. For brevity,Fig. 2 depicts the efficiency
trends for the most inefficient JMS/JMS E with the
lowest mean PTE value of 46.88. There are unstable
efficiency trends for JMS E. The SE score for JMS E
slightly differed during the time period January–June
2000 while its TE and PTE scores evidently differed
and dramatically declined to the bottom in July. After
investigating causes of this considerable change, we
have found that the declining is due to lack of available
spare parts for supporting its maintainability. Once a
JMS obtained spare parts needed through defence ac-
quisition undertaken in July that is a new buy for a
new fiscal year, it was then in an effective operational
state. Thus, each of three efficiency scores for JMS E
exhibits an upward trend starting in July 2000. The Di-
rector of the TLC recognized this issue and asked his
staff managers to take it into account in future acquisi-
tion and maintenance of spare part inventories. How-
ever, acquisition of spare parts for military use may
not be easy due to foreigner governments’ restrictions.

The solution of the DEA models yields target input
and output level which would render inefficient JMSs
efficient, if not already so (seeCharnes et al., 1978).
Table 6shows the potential improvements for the in-
efficient JMSs.
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Table 6
Targets and potential improvements for the inefficient DMUs

DMU code x1 x2 x3 x4 x6 y1 y2 y3 y4 y5

Target
B-1 149.83 1036.54 58 3313 2176.60 57.63 409.94 8.60 139.07 182.10
B-2 156.79 1054.69 58 3522 2071.30 58.21 473.57 9.83 274.82 189.71
B-3 191.31 1532.52 81 3471 3988.98 99.49 785.58 16.18 122.24 160.74
B-4 169.64 1459.58 80 2877 3511.52 90.21 709.19 14.64 330.37 153.39
B-5 152.99 1365.73 77 2522 3218.31 81.94 637.15 13.22 300.94 148.26
B-6 165.68 1500.19 83 2624 3319.34 90.15 714.29 14.70 325.89 151.33

Mean 164.37 1324.88 72.83 3054 3047.68 79.61 621.62 12.86 248.89 164.26

C-1 103.63 577.21 38 2836 3341.59 41.93 243.27 5.73 193.27 139.88
C-2 104.65 705.49 36 3340 3168.50 30.57 181.34 3.88 584.79 148.39
C-3 109.58 575.64 37 3057 3514.75 43.82 256.62 6.01 202.39 142.18
C-4 102.85 575.20 38 2813 3323.23 41.61 240.74 5.68 191.99 139.61
C-5 104.42 596.21 39 2814 3327.29 42.76 251.84 5.89 195.25 139.93
C-6 111.46 629.49 39 3067 2713.50 33.34 244.60 5.56 223.83 157.61

Mean 106.09 609.87 37.83 2988 3231.48 39.01 236.40 5.46 265.25 144.60

D-3 55.92 1660 143.18 1461 391.16 14.02 46.76 1.49 107.14 122.48
D-4 64 2139.04 169.61 1575.16 416.56 19.51 98.01 2.47 146.99 119.16
D-6 81 3588.17 247.93 2670.10 343.05 17.79 90.60 2.24 250.95 118.83

Mean 66.97 2462.40 186.91 1902.09 383.59 17.11 78.46 2.07 168.36 120.16

E-2 141 1999.61 116.23 387.38 1642.34 97.25 833.09 16.69 307.81 135.16
E-3 143 2025.35 117.44 391,28 1649.43 98.69 846.85 16.95 311.92 135.58
E-4 160 2244.15 127.76 424.48 1709.63 110.87 963.87 19.19 346.89 139.18
E-5 160 2244.15 127.76 424.48 1709.63 110.87 963.87 19.19 346.89 139.18
E-6 173 2411.47 135.65 449.86 1755.67 120.18 1053.3 20.91 373.64 141.93

Mean 155 2184.95 124.97 421.55 1693.34 107.57 932.19 18.59 337.43 138.21

Potential improvement (%)
B-1 −47.06 −76.42 423.94 819.88 859.79 133.72 1.73
B-2 −47.21 −75.95 263.80 999.90 882.91 −4.32 1.45
B-3 −36.23 −65.94 −29.39 77.66 999.90 439.20 −63.84 −1217
B-4 −36.70 −68.87 −85.05 329.59 454.06 265.99 −50.98 −16.18
B-5 −48.66 −72.03 −76.68 192.64 696.44 999.90 37.42 −18.98
B-6 −41.04 −69.56 −55.46 291.97 349.24 267.62 −15.35 −17.31

Mean −42.82 −71.46 −61.65 263.27 719.90 619.24 6.11 −211.1

C-1 −13.64 −81.57 −29.42 222.53 312.32 90.89 −18.45 −1.49
C-2 −17.60 −83.11 239.61 571.63 −3.06 35.37 4.51
C-3 −32.36 −87.85 −21.63 −4.73 133.29 100.34 −38.67 0.13
C-4 −19.02 −89.12 −39.22 197.24 999.90 183.77 1.05 −1.69
C-5 −19.67 −89.37 −26.94 256.37 403.67 194.38 150.32 −0.76
C-6 −33.26 −89.24 101.78 389.21 85.25 −26.61 19.40

Mean −22.59 −86.71 −29.30 168.80 468.34 108.59 17.17 3.35

D-3 −3.58 −1.93 −17.53 6.27 49.31 386.98 4.68
D-4 −17.63 −13.90 −30.36 21.93 326.13 146.53 31.24 1.84
D-6 −20.79 −17.08 −27.01 48.24 723.66 124.38 185.17 −1.79

Mean −3.58 −19.21 −10.97 −28.69 17.55 352.02 106.74 201.13 1.58

E-2 −37.18 −51.37 −86.70 −44.88 594.67 999.90 233.78 115.25 −29.60
E-3 −52.92 −51.07 −84.01 −43.24 996.52 −0.37 239.05 −57.39 −28.64
E-4 −38.52 −48.27 −83.88 −22.71 691.90 404.64 74.49 24.78 −23.95
E-5 −41.21 −47.42 −80.42 −53.08 823.88 999.90 91.94 48.25 −21.37
E-6 −38.84 −41.78 −79.54 −24.18 999.90 431.99 596.93 0.44 −20.27

Mean −41.73 −47.98 −82.91 −37.62 821.37 567.21 247.24 26.27 −24.77
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The TARGET column shows the amount of inputs
and outputs that an inefficient unit should be using
or producing in order to be efficient while POTEN-
TIAL IMPROVEMENT column shows how much, in
percentage terms, an inefficient JMS’s use of inputs
or production of output needs to change by in order
for it to be efficient. For example, the most ineffi-
cient JMS/JMS E, on average, can increase its fixed
vehicle number by 821.37%, fixed armament num-
ber by 567.21%, fixed armored vehicle number by
247.24%, and number of other equipment fixed by
26.27%; while simultaneously reducing its assigned
armament number by 41.73%, assigned armored ve-
hicle number by 47.98%, number of other equipment
assigned by 82.91%, labor hour by 37.62% and num-
ber of trainees by 24.77%. Similarly, such an analysis
can be applied to the other inefficient JMSs.

We should note here, it is sometime difficult for
an inefficient JMS to make improvement when its in-
creasing output level or reducing input levels is over
100%. JMS managers can use the potential improve-
ments reported inTable 6 to identify directions for
improving inefficiency. In addition, we tested the sta-
bility of the efficiency scores to variable variation. We,
then, have found that the more input and output vari-
ables are included in the model, the higher will be the
number of DMUs with an efficiency score equal to
unity.

Once this experiment was completed, the DEA re-
sults were then provided to the managers of the JMSs
and to the staff managers of the TLC with instructions
from us to use the results to improve their relative effi-
ciency score over the next six months. This was done
by providing them several recommendations: (1) con-
sideration of expansion of the inefficient JMSs, (2)
use of the potential improvements as a guideline for
improving inefficiencies, and (3) development of an
effective operational state.

4.3. Results over time

At the end of the year 2000, data were again col-
lected and analyzed using the DEA models.Table 4
summarizes these results for the DEA models.Table 5
presents the comparison of the DEA results over time
for each of JMSs in terms of mean efficiency.

In contrast to efficiency gains made from January
to June 2000, the number of DMUs received TE, PTE

and SE scores of 100% in the July–December evalua-
tion has increased from 3 to 7, 10–18, and 4–7, respec-
tively. The mean TE score has increased from 42.53 to
48.96 (+15.12%); the mean PTE score has increased
from 60.34 to 75.04 (+24.36%); and the mean SE
score has decreased from 73.87 to 65.76 (−10.98%).
In addition, the number of CRS has increased from 4
to 12 while the number of IRS has reduced from 26
to 18.

From Table 5, JMSs B, C, and E have increased
technical and pure technical efficiencies over time
while the other two JMSs have reduced their efficiency
scores. In addition, JMS D has slightly increased its
scale efficiency score while the other four JMSs have
reduced their scale efficiency scores.

4.4. Managerial reactions to DEA

After presenting the results of DEA to LTC and
JMS managers, we had their reactions to DEA. All
managers agree DEA was helpful in assessing relative
organizational performance, identifying inefficiencies,
locating slack resources, and identifying comparable
units. However, some of managers expressed the view
that DEA did not address quality of operations. As
for the Director of the TLC, he was happy with the
DEA results and recommended that a performance
measurement tool should take into account quality
and efficiency of operations. Currently, DEA is im-
plemented at JMSs and more experiments to test the
effects of DEA in other TLC maintenance units are
undertaken.

5. Conclusions

This research has developed an alternative DEA
model to assist the TLC in evaluating the performance
of JMSs and empirically tested the applicability of
the proposed model. The proposed model takes into
account non-controllable inputs/outputs and weight
restrictions. The research findings have shown that
using DEA over time can be seen as a basis for con-
tinuous improvement. On average, JMSs B, C, and E
have increased technical and pure technical efficien-
cies through DEA recommendation remedial actions
while the other two JMSs have reduced their scores.
Only JMS D has slightly increased its scale efficiency
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score while the other four JMSs have reduced their
scores.

Since the JMSs had no creditable system prior to
the DEA analysis, this study has made a stand alone
contribution by presenting the DEA results. Clearly,
the stricter the standards against which productivity is
evaluated, the sharper the management tool. Such ad-
ditional sharpness can be introduced by adding quality
metrics to future DEA research efforts.
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